NYBELINIA POCHE, 1926 (CESTODA: TRYPANORRHYNCHA) FROM THE MOÇAMBIQUE COAST, WITH DESCRIPTION OF N. BEVERIDGEI SP. NOV. AND SYSTEMATIC CONSIDERATION OF THE GENUS

H. W. PALM*, T. WALTER*, G. SCHWERDTFEGER* and L. W. REIMER†

A total of 247 specimens from 16 fish and one cephalopod species from the coastal waters of Moçambique was investigated for infestation with trypanorhynch cestodes. Postlarvae of six different Nybelinia species could be identified: N. africana, N. amricosum, N. beveridgei sp. nov., N. gopalai, N. robusta, and N. yamagutii. All represent new locality records. In all, 27 new host records were established. N. yamagutii and N. africana were the most abundant parasites, infesting seven and six of the examined fish and cephalopod species respectively. The squid Todarodes angolensis and the teleost Ventrissoa nasuta had the highest prevalence of infestation (79 and 75 % respectively). Whereas the teleost Scraida undesiquamis was infested with four different Nybelinia species, most hosts harboured a single species only. To date, a total of 47 different Nybelinia species are known. Of these, 43 are considered to be adequately described. N. beveridgei sp. nov. can be distinguished by its large scolex and its homeocanthous heteromorphic tentacular armature and its characteristic basal armature. For further taxonomic work and to simplify Nybelinia identification, a new subdivision of the species is proposed, based on the following 3 characters: metasomal tentacular armature, tentacles with or without a characteristic basal armature; and size of basal hooks in comparison to metasomal hooks. A cladistic analysis revealed no further insights into the phylogeny of the genus.

Trypanorhynch cestodes are characterized by a tentacular apparatus with four eversible armed tentacles and two or four bothridia. In their life cycles, they use small crustaceans as first intermediate hosts and teleosts or other invertebrates such as cephalopods as second intermediate hosts. The occurrence of these cestodes in the flesh of commercially exploited species may reduce their market value (Mehl 1970, Seyda 1976, Deardorff et al. 1984). Although they have been found to infest humans only accidentally and causing no serious danger to human health, their presence in the musculature offends potential consumers (Fripp and Mason 1983, Bates 1990).

Investigations of the trypanorhynch fauna from the Indian Ocean along the South-East African coast are scarce. From the coastal waters off South Africa, Linton (1924) reported six trypanorhynchs, Floriceps saccatus, Grillotia erinaceus, Hepatoxyylon trichuri, Poecilancistrum carophyllum, Tentacularia coryphaeae, and Rhynchobothrium sp.. Later, Botha (1986) and Payne (1986) reported the species H. trichiuri, and Botha (1986) reported Grillotia heptanchi and Tetrahydrhynchs sp.. Schramm (1989, 1991) found Grillotia perelica and P. caryophyllum in different mytilids from Transkei (South Africa). From the coastal area off Moçambique, only two investigations have been published. Reimer (1984) found the trypanorhynch Parachristianella sp. and Prochristianella sp. in penaeid shrimps and Callitrynchus gracilis, Christianella sp., Dasyrhynchs pillersi, Otobothrium crenacle, Parachristianella sp. and Pseudogrillotia sp. from different benthic fish species. Additionally, that author found 11 of 22 fish species examined infested with Nybelinia spp., which he did not further identify. Reimer (1989) reported Parachristianella sp. and Prochristianella sp. in penaeid shrimps and Nybelinia sp. in the squid Todarodes sagittatus angolensis.

The classification of trypanorhynch cestodes is still considered to be chaotic and confusing (Palm 1997a). Within the genus Nybelinia, Schmidt (1986) listed 39 and Beveridge and Campbell (1996) reported 43 species, indicating that this genus includes more species than any other. Additionally, many species descriptions are inadequate. However, the last revision of the genus Nybelinia is that by Dollfus (1942), who later described 16 additional species (Dollfus 1960) and arranged them in five different sections on the basis of the following four characters: different kind of hook on bothridial and antibothridial tentacle surfaces; presence of a characteristic basal armature; width of tentacle; and bulb ratio. Since then, though several new species have been de-

* Marine Pathology Group, Department of Fisheries Biology, Institut für Meereskunde an der Universität Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. E-mail: h-palm@imf.uni-kiel.de
† Am Bahnhof Minden Stadt 4, D-32423 Minden, Germany
Manuscript received: March 1997
Table I: Fish and cephalopod species examined

<table>
<thead>
<tr>
<th>Family/species</th>
<th>number examined</th>
<th>Date</th>
<th>Position</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ommastrephidae</td>
<td>33</td>
<td>06 Nov. 1988</td>
<td>21°26'S, 35°41'E</td>
<td>570</td>
</tr>
<tr>
<td>Todarodes angolensis</td>
<td></td>
<td>07 Nov. 1988</td>
<td>22°06'S, 35°45'E</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08 Nov. 1988</td>
<td>23°09'S, 35°49'E</td>
<td>325</td>
</tr>
<tr>
<td>Rajidae</td>
<td>1</td>
<td>13 Jun. 1980</td>
<td>23°19'S, 35°48'E</td>
<td>310</td>
</tr>
<tr>
<td>Raja leopardus</td>
<td></td>
<td>19 Jan. 1982</td>
<td>22°21'S, 35°51'E</td>
<td>630</td>
</tr>
<tr>
<td>Bothidae</td>
<td>11(7*)</td>
<td>01 Feb. 1982</td>
<td>25°50'S, 34°27'E</td>
<td>420</td>
</tr>
<tr>
<td>Chaunacidae</td>
<td>16</td>
<td>12 Jun. 1980</td>
<td>22°59'S, 35°41'E</td>
<td>200</td>
</tr>
<tr>
<td>Chaunax pictus</td>
<td></td>
<td>18 Jan. 1982</td>
<td>22°08'S, 35°52'E</td>
<td>760</td>
</tr>
<tr>
<td>Congridae</td>
<td></td>
<td>04 Aug. 1980</td>
<td>20°07'S, 35°54'E</td>
<td>300</td>
</tr>
<tr>
<td>Bassanago albescens</td>
<td>13(11*)</td>
<td>18 Jan. 1982</td>
<td>22°07'S, 35°54'E</td>
<td>750</td>
</tr>
<tr>
<td>Gonorynchidae</td>
<td>13</td>
<td>10 Feb. 1982</td>
<td>26°01'S, 34°15'E</td>
<td>610</td>
</tr>
<tr>
<td>Gonorynchus gonorynchus</td>
<td>13</td>
<td>24 Jan. 1982</td>
<td>22°03'S, 35°47'E</td>
<td>545</td>
</tr>
<tr>
<td>Lophiidae</td>
<td>8</td>
<td>27 Oct. 1988</td>
<td>23°47'S, 35°53'E</td>
<td>750</td>
</tr>
<tr>
<td>Lophiodes nutilus</td>
<td></td>
<td>14 Jun. 1980</td>
<td>25°29'S, 35°03'E</td>
<td>425</td>
</tr>
<tr>
<td>Macrouridae</td>
<td>13(13*)</td>
<td>24 Jan. 1982</td>
<td>23°43'S, 35°51'E</td>
<td>610</td>
</tr>
<tr>
<td>Coelorinchus braueri</td>
<td></td>
<td>11 Jan. 1982</td>
<td>24°52'S, 35°27'E</td>
<td>440</td>
</tr>
<tr>
<td>C. flabellinus</td>
<td>21(16*)</td>
<td>18 Jan. 1982</td>
<td>22°05'S, 35°45'E</td>
<td>530</td>
</tr>
<tr>
<td>Ventrislitta nasuta</td>
<td>9</td>
<td>13 Jan. 1982</td>
<td>21°44'S, 35°36'E</td>
<td>500</td>
</tr>
<tr>
<td>Paralepididae</td>
<td>6</td>
<td>14 Jan. 1982</td>
<td>21°05'S, 35°45'E</td>
<td>520</td>
</tr>
<tr>
<td>Lestoletis intermedia</td>
<td>11(7*)</td>
<td>16 Jan. 1982</td>
<td>21°38'S, 35°44'E</td>
<td>650</td>
</tr>
<tr>
<td>Arctides rissot</td>
<td>11</td>
<td>13 Jan. 1982</td>
<td>24°38'S, 35°32'E</td>
<td>420</td>
</tr>
<tr>
<td>Peristaltidae</td>
<td></td>
<td>14 Jan. 1982</td>
<td>24°15'S, 35°40'E</td>
<td>450</td>
</tr>
<tr>
<td>Peristidion adeni</td>
<td></td>
<td>15 Jan. 1982</td>
<td>25°38'S, 35°38'E</td>
<td>425</td>
</tr>
<tr>
<td>Polymixnididae</td>
<td>25(11*)</td>
<td>29 Oct. 1988</td>
<td>23°05'S, 35°58'E</td>
<td>750</td>
</tr>
<tr>
<td>Synodontidae</td>
<td></td>
<td>30 Oct. 1988</td>
<td>23°05'S, 35°58'E</td>
<td>750</td>
</tr>
<tr>
<td>Benthodesmus elongatus</td>
<td>3</td>
<td>22 Jan. 1982</td>
<td>23°05'S, 35°58'E</td>
<td>750</td>
</tr>
</tbody>
</table>

* In Reimer (1984)

The usefulness of these characters to subdivide different species within the genus Nybelinia has not been examined.

The aim of this communication is to present further data on the occurrence of Nybelinia species from the south-east African coast of Mozambique. Additionally, most of the Nybelinia specimens found by Reimer (1984, 1989) were identified. The present study provides further information on the species composition of a typical subtropical locality in comparison to other recent investigations in the tropical Atlantic Ocean (Palm et al. 1994, Palm 1997b). Furthermore, the descriptions of all Nybelinia species were examined to establish the usefulness of separating different species into sections, as proposed by Dollfus (1960), and a cladistic analysis of the genus was carried out to provide insights into the phylogeny of the genus.

MATERIAL AND METHODS

Between 1980 and 1988, the viscera of a total of 214 fish belonging to 16 species and 13 families were examined for trypanorhynch cestodes (Table I). Stomach, stomach wall, body cavity, peritoneum and musculature were examined. Additionally, all internal organs and the mantle cavities of 33 specimens of an ommastrephid squid were examined. All were caught...
on the fisheries research vessel *Ernst Haeckel* as by-catch of shrimp hauls between 34°15' and 35°58' E and 20°07' and 26°01'S (Fig. 1).

All specimens sampled were examined fresh. In the laboratory, they were measured, filleted and the internal organs were removed. The viscera were searched with the aid of a stereoscopic dissecting microscope with 6–10× magnification. Postlarvae were fixed in Demke's fluid and after fixation, they were stained with Carmine and mounted in Canada balsam. The measurements and drawings were made under a Leitz Wetzlar Orthoplan microscope. Additionally, a single *Nybelinia* specimen from *Coelorinchus fasciatus* from the coastal waters of Namibia (21°43'S, 13°04'E) collected by A. A. Kovaljova, ATLANTNIRO Kaliningrad, Russia, on 04.10.1976 was examined for comparison.

For identification of the species and for systematic consideration, 47 original descriptions of *Nybelinia* species as well as descriptions by Dollfus (1942), Pintér (1927, 1930), and Sáo Clemente and Gomes (1992) were used. With the exception of original descriptions by Cuvier (1817, *N. lingualis*), Linton (1889, *N. bisulcata*), MacCallum (1917, *N. narinari*) and species cited in the present study, further original citations were given by Beveridge and Campbell.
Table II: Infestation of *Nybelinia* spp. in fish from coastal waters off Moçambique

<table>
<thead>
<tr>
<th>Host species</th>
<th>Infestation with Nybelinia spp.</th>
<th>Site</th>
<th>Level (%)</th>
<th>Species identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todarodes angolensis</td>
<td></td>
<td>Mantle, organs, in the stomach wall</td>
<td>78.8</td>
<td>N. africana, N. anticoecus, N. yamagutii</td>
</tr>
<tr>
<td>Raja lepardi</td>
<td></td>
<td>Stomach</td>
<td>100</td>
<td>N. robusta</td>
</tr>
<tr>
<td>Chacocanopetra lugubris</td>
<td></td>
<td>Stomach</td>
<td>45 (43*)</td>
<td>Nybelinia beveridgei sp. nov.</td>
</tr>
<tr>
<td>Chaunax pictus</td>
<td></td>
<td>Stomach wall</td>
<td>32.3</td>
<td>N. yamagutii</td>
</tr>
<tr>
<td>Bassanago alboescens</td>
<td></td>
<td>Peritoneum</td>
<td>23</td>
<td>N. robusta</td>
</tr>
<tr>
<td>Gonorrhynchus gonorrhynchus</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>15.4 (18*)</td>
<td>N. anticoecus</td>
</tr>
<tr>
<td>Lophaedus matilis</td>
<td></td>
<td>Stomach wall</td>
<td>37.5</td>
<td>Nybelinia beveridgei sp. nov.</td>
</tr>
<tr>
<td>Coelorhinchus braueri</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>30.8 (30.8*)</td>
<td>Nybelinia beveridgei sp. nov.</td>
</tr>
<tr>
<td>C. flabellispinus</td>
<td></td>
<td>Stomach wall</td>
<td>28.6 (37.5*)</td>
<td>N. gopalai, N. yamagutii</td>
</tr>
<tr>
<td>Ventrofossa nasuta</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>75</td>
<td>N. gopalai</td>
</tr>
<tr>
<td>Lestrolepis intermedia</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>22.2</td>
<td>N. africana</td>
</tr>
<tr>
<td>Arctozenus rissi</td>
<td></td>
<td>Stomach wall</td>
<td>16.7</td>
<td>N. africana</td>
</tr>
<tr>
<td>Peristodion adeni</td>
<td></td>
<td>Stomach wall</td>
<td>45 (43*)</td>
<td>N. africana, N. yamagutii, N. robusta</td>
</tr>
<tr>
<td>Polyphax nubilis</td>
<td></td>
<td>Stomach wall, peritoneum</td>
<td>60 (60*)</td>
<td>N. africana, N. yamagutii</td>
</tr>
<tr>
<td>Polyphax polli</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>3.6</td>
<td>N. yamagutii</td>
</tr>
<tr>
<td>Saurida undesquamis</td>
<td></td>
<td>Stomach</td>
<td>45 (27*)</td>
<td>N. africana, N. yamagutii</td>
</tr>
<tr>
<td>Benthodesmus elongatus</td>
<td></td>
<td>Body cavity, peritoneum</td>
<td>33.3</td>
<td>N. africana, N. yamagutii</td>
</tr>
</tbody>
</table>

* In Reimer (1984)

(1996). In the taxonomic section of this communication, the following abbreviations are used for the different body parts of the postlarvae: scolex length (SL), scolex width at level of pars bothridialis (SW), pars bothridialis (pbo), pars vaginalis (pv), pars bulbosa (pb), appendix (app), velum (vel), bulb ratio (BR), ratio of pbo:pv:pb (SP), and tentacle width (TW). All measurements are given in μm unless otherwise indicated. The range is given in parenthesis. The classification follows that of Palm (1995, 1997a). The orientation of the tentacle surfaces follows that of Campbell and Beveridge (1994).

A cladistic analysis (heuristic search) using PAUP (Phylogenetic Analysis Using Parsimony) 3.1.1 was carried out to provide insights into the phylogeny of the genus. In all 12 characters were used: scolex length >3,000 (0), or ≤3,000 (1); ratio of pbo to pb >2 (0), or ≤2 (1); pars postbulbosa present (0), or absent (1); bulbs long (length to width ratio ≥4:1) (0), or bulbs short (length to width ratio <4:1) (1); tentacle width >50 (0), or ≤50 (1); basal swelling on tentacle present (0), or absent (1); metabasal armature homoeomorphous (0), or heteromorphous (1); metabasal armature, slender hooks with a small basal plate absent (0), or present (1); characteristic basal armature present (0), or absent (1); size of basal hooks smaller (0), equal (1), or larger (2) than metabasal hooks; basal hooks, swollen at middle and strongly recurved at tip, absent (0), or present (1); muscular ring around the basal tentacle sheaths present (0), or absent (1). The tentaculariid *Tentacularia coryphaenae* was chosen as the outgroup. Strobilar characters could not be used, because most species within the genus are described only from postlarvae.

RESULTS

Six different species of the genus *Nybelinia* were found in the fish and cephalopod species investigated (Table II). All parasite species represent novel locality records and 27 represent new host records. In one fish species, *Saurida undesquamis*, four different *Nybelinia* species were present (Table II). *N. yamagutii* and *N. africana* were the most abundant parasites, infesting seven and six different host species respectively. The highest prevalences of infestation (79% and 75%, without considering *N. robusta* in one single ray) were found in the squid *Todarodes angolensis* and the teleost *Ventrofossa nasuta*. The majority of the *Nybelinia* postlarvae were isolated from the stomach, stomach wall and body cavity. The morphological measurements used for species identification, as well as comments on their distribution pattern, are given below.
Fig. 2: *Nybelinia beveridgei* sp. nov. – (a) scolex, (b) bulb with retractor muscle and muscular ring around the basal part of the tentacle sheath. Scale bar: (a) = 1 mm, (b) = 200 μm
Superfamily Tentacularioidea Poche, 1926
Family Tentaculariidae Poche, 1926
Genus Nybelinia Poche, 1926

Nybelinia africana Dollfus, 1960

N. africana was found in five different fish species and for the first time in a cephalopod, _Todarodes angolensis_ (Table II). Though the morphometrical measurements of the scolex and tentacles of 23 specimens of six host species were greater than the data given by Dollfus (1960), the bulb ratio as well as scolex proportions were similar. The measurements were as follows: _SL_ = 1, 343 (1, 118–1, 568), _SW_ = 880 (416–1, 344), _pbo_ = 891 (715–1, 066), _pv_ = 657 (416–897), _pb_ = 351 (234–468), _app_ = 481 (351–611), _vel_ = 377 (182–572), _BR_ = 2.9:1, _SP_ = 2.5:1, 9:1, _TW_ = 32–45. The tentacular armature consisted of short, sharply recurved basal hooks (length = 10–16, base = 7–10) and a homeomorphous metabasal armature with long, slender hooks.
(length = 20–32, base = 10–16). *N. africana* has been described from the Mediterranean Sea and from two localities off North-West Africa (Dollfus 1960). The present finding extends the known range of the species to the south-west Indian Ocean.

Nybelinia anticosum Heinz and Dailey, 1974

Postlarvae of *N. anticosum* are reported for the first time from two teleost species and the cephalopod *Todarodes angolensis* (Table II). All measurements of the scolex and the metabasal armature of three specimens from three host species lie within the range given for adults by Heinz and Dailey (1974), with the exception of SW. The measurements were as follows: SL = 1 936 (1 760–2 112), SW = 1 120 (864–1 376), pbo = 992 (800–1 186), pv = 816 (640–992), pb = 496 (416–576), app = 430 (352–507), vel = 387 (325–448), BR = 3.4:1, SP = 2:1.6:1, TW = 48–55. The tentacular armature consisted of homeomorphic hooks, larger in the metabasal region (length = 24–32, base = 13–16) than in the basal region (length = 18, base = 10). The present finding extends the known range of *N. anticosum* from the Pacific Coast of southern California and northern Mexico (Heinz and Dailey 1974) to the south-west Indian Ocean.

Nybelinia beveridgei sp. nov.

Material described – Holotype and three paratypes from *Chascanopsetta lugubris*, *Coelorinchus braueri* and *Lophiodes mutilus* from coastal waters off Moçambique, and one specimen from *Coelorinchus fasciatus* from the Namibian coast.

Description – with the characters of the genus *Nybelinia*. The scolex is craspedote, massive, with a total length (with velum and without appendix) of 4 640 (4 000–5 280) and width of 2 604 (2 176–3 104) – Fig. 2a. The length of the bothridia is more than half the scolex length. The scolex measurements of the specimens from Moçambique are as follows: pbo = 2 912 (2 784–3 040), pv = 2 704 (2 368–3 040), app = 864 (608–1 120), vel = 832 (608–1 120). The bulb ratio is 3.3:1, with a bulb length of 960 (928–992) and width of 288 (256–320). The tentacles are 1 020 long and 81–98 wide, not diminishing in diameter in distal tentacular region. A basal swelling is absent. The tentacle sheaths are 2 700–3 070 long and 95–122 wide. A prebulbular organ is absent, a muscular ring around the basal part of the tentacle sheaths is present (not visible in all specimens) – Fig. 2b. The retractor muscle originates in the basal part of the bulb. SP is 3.0:2.8:1. A short pars post-bulbosa 52 (39–65) is present. The measurements of a single specimen of *N. beveridgei* sp. nov. from the coastal waters of Namibia were as follows: SL = 5 760, SW = 3 040, pbo = 3 200, pv = 3 520, pb = 1 070, app = 1 040, vel = 975, BR = 2.93:1, SP = 3.0:3.3:1, TW = 117–122.

The massive hooks of the homeoacanthous armature are different in shape and size on bothridial and antiburidial metabasal tentacle surfaces (Fig. 3a). On the antiburidial surface, the tentacular armature consists of strongly recurved and solid hooks with a large base (length = 46–49, base = 39–42, Fig. 3c [2]). On the bothridial surface, the hooks are more slender and slightly curved with a stout base (length = 65–68, base = 33–35, Fig. 3c [1]). A characteristic basal armature consisting of 6–7 rows is present (Fig. 3b). The basal hooks are homeomorphic with a stout base, a slender shaft, and strongly recurved at the tip (Fig. 3c [3]). They are smaller than in the metabasal region of the tentacle (length = 36–39, base = 23–26), increasing in size towards the metabasal armature. Number of hooks per half row is 6.

TAXONOMIC SUMMARY

Type hosts – *Chascanopsetta lugubris*, *Lophiodes mutilus*, *Coelorinchus braueri*

Site – Stomach, stomach wall, body cavity

Place of collection – 22°21'S, 35°51'E; 20°07'S, 35°54'E; 22°07'S, 35°4'E

Type material – Holotype from the stomach of *Chascanopsetta lugubris* from the coastal waters of Moçambique (19.01.1982, collected by L. W. Reimer, in the British Museum (Natural History), London, number BM (NH) 1997.3.24.1). Three paratypes from the stomach wall, body cavity and peritoneum of *Lophiodes mutilus* and *Coelorinchus braueri* from the coastal waters of Moçambique (04.08.1980 and 18.01.1982, collected by L. W. Reimer, numbers BM (NH) 1997.3.24.2 and 1997.3.24.3–4).

Other material – For comparison, the single specimen from *Coelorinchus fasciatus* from the coastal waters of Namibia, accessioned as BM (NH) 1997.3.24.5.

Etymology – The new species was named after I. Beveridge, University of Melbourne, in honour of his taxonomic work on the order Trypanorhyncha.
REMARKS

Nybelinia beveridgei sp. nov. is characterized by a homeoacanthous armature of heteromorphous metabasal hooks (on opposite tentacle surfaces) and a characteristic basal armature of homeomorphous hooks. Several other members of the genus have a heteromorphous metabasal armature. N. karachii Khurshid and Bilquees, 1988 as well as N. alloioitica, N. cadenatii, N. dakari, N. estingmena, N. eureia, N. punctatissima and N. senegalensis, all described by Dollfus (1960), can be distinguished from N. beveridgei sp. nov. by having a much smaller scolex size, a different size and shape of hooks, different SP and lack of a characteristic basal armature. Species of Nybelinia with heteromorphous hooks together with a characteristic basal armature are N. herdmanni Shipley and Hornell, 1906, N. nipponica Yamaguti, 1952. N. rougetcampanae Dollfus, 1960 and N. yamagutii Dollfus, 1960. These species differ from N. beveridgei sp. nov. in having a basal armature consisting of heteromorphous hooks.

Nybelinia gopalai Chandra and Hanumantha Rao, 1985

N. gopalai was found in four teleosts (Table II). All morphometric measurements of the scolex and tentacle armature of 10 specimens of three host species lie within the range given by Chandra and Hanumantha Rao (1985). The measurements were as follows: SL = 1.692 (1.144–2.240), SW = 761 (416–1.015), pbo = 767 (520–1.014), pv = 956 (611–1.300), pb = 501 (286–715), app = 241 (156–325), vel = 104 (65–143), BR = 7.1:1, SP = 1.5:1.9:1, TW = 16–35. The tentacular armature of the metabasal region consisted of homeomorphous, solid, small (length = 8) hooks. The basal hooks, on a basal tentacular swelling, differ from the metabasal hooks; they are larger (length = 16, base = 5–8), somewhat swollen in the middle and strongly recurved at the tip. The first finding of N. gopalai was from the Bay of Bengal (Chandra and Hanumantha Rao 1985). The present record extends the known distribution of the species to the south-west Indian Ocean.

Nybelinia robusta (Linton, 1890)

N. robusta was found in a single elasmobranch and four teleosts (Table II). Although the morphometric measurements of the scolex and tentacles of 27 specimens from all five host species were larger than the data of Linton (1890), the bulb ratio and scolex proportions were similar. The measurements were as follows: SL = 2.064 (1.600–2.528), SW = 944 (416–1.472), pbo = 1.092 (832–1.352), pv = 982 (767–1.472), pb = 511 (384–637), app = 841 (273–1.408), vel = 162 (117–608), BR = 4.4:1, SP = 2.1:1.9:1, TW = 29–33. The tentacular armature consisted of homeomorphous hooks in the metabasal region (length = 16, base = 10–13). A characteristic basal armature with smaller (length = 8, base = 7), more recurved hooks was present. Therefore, with this finding of N. robusta, its distribution is extended from the North-West Atlantic (Linton 1890), eastern Atlantic (Dollfus, 1942) and the northern Indian Ocean (Kyan-Myint 1968, cited in Bates 1990) to the south-west Indian Ocean.

Nybelinia yamagutii Dollfus, 1960

N. yamagutii was found in six teleosts and for the first time in the cephalopod Todarodes angolensis (Table II). All morphometric measurements of the scolex and the metabasal armature of 20 specimens from seven host species were within the range given by Dollfus (1960), with the exception of some specimens which were smaller or larger than those given by Dollfus (1960). The measurements were as follows: SL = 2.544 (1.183–3.904), SW = 993 (546–1.440), pbo = 1.240 (529–1.888), pv = 1.353 (689–2.016), pb = 927 (286–1.568), app = 341 (169–512), vel = 161 (65–256), BR = 6.7:1, SP = 1.3:1.5:1, TW = 42–80. The metabasal hooks of the homeoacanthous armature were heteromorphous. The strongly recurved hooks on the antibioticul surface surface were larger (maximum: length = 65, base = 21). On the bohidridal surface, the claw-like hooks (length = 45, base = 17) were smaller. The hooks on the basal region of the tentacle (length = 26–39, base = 10–13) also appeared different from the hooks of the metabasal region; they were swollen in the middle and had a strongly recurved tip. The present finding extends the known range of N. yamagutii from the North American Atlantic coast (Stunkard 1977) and West African (Dollfus 1960) coasts to the south-west Indian Ocean.

Dollfus (1960) described N. yamagutii as having differently formed hooks on the internal and external tentacle surfaces. In contrast to this, the specimens in the present study showed different hooks on the antibothridial/bohidridal tentacle surfaces.

Cladistic analysis

The heuristic search gave no clear result. As more species were added, the more the species changed
their positions on the resulting tree. Although the 12 listed characters appeared to be useful to separate between different species on a morphological basis, the number of characters is too few to provide a cladistic analysis.

DISCUSSION AND SYSTEMATICS

During the present study, six different Nybelinia species from the Moçambique coast were found in one cephalopod and 16 fish species investigated. Only N. gopalai was found previously in Saurida undosquamis (Chandra and Hanumantha Rao 1985), which was found earlier to be infested with Nybelinia sp. (Paruchin and Skryabin 1989) at a prevalence of 96%. All other findings represent new host records, because Reimer (1984, 1989) and Paruchin and Skryabin (1989) reported parasites as Nybelinia sp., which they did not further identify. Together with the occurrence of Nybelinia sp. in Malacoccephalus laevis, Merluccius capensis, Psenes argufensis and Thyrsitoides marleyi (Reimer 1984), 21 different hosts from the Moçambique coast are known to harbour these trypanorhynchs, and 15 fish species were not infested.

Most Nybelinia specimens were found in the stomach, stomach wall or the body cavity, which appear to be the preferred sites of the postlarvae. This corresponds to the site preference of the adults, which often infest the stomach of their elasmobranch final hosts (Bates 1990, Palm 1995). Musculature infestation was detected in only a single case: Saurida undosquamis harboured postlarvae of N. anthicosum. Together with N. erythrea (see Dollfus 1960), N. surmenicola (see Arthur et al. 1982) and N. indica (see Chandra 1986), four Nybelinia species are known to infest the musculature. However, as several reports of Nybelinia sp. from the musculature have not been identified to species (Bates 1990) and others have been described only as adults, further findings of flesh-infesting Nybelinia species can be expected.

All six Nybelinia species collected inhabit different localities, and with the exception of N. gopalai (restricted to the Indian Ocean) different oceans. For example, Nybelina yamaguitii has been reported from several regions of the Atlantic (Kinne 1990) and from the Indian Ocean and might be considered cosmopolitan. Similarly, N. africana, N. anthicosum and N. robusta have an interoceanic and perhaps a worldwide distribution. With the transoceanic record of N. edwini, N. rougetcampanae and N. senegalensis from the south-west American coast (Palm 1997b, São Clemente and Gomes 1992) and N. alloi-
preferred site of infestation (Palm 1995), it is proposed that these worms additionally have evolved a different life cycle strategy. The development of different life cycles within trypanorhynch estodes has been earlier described by Mattis (1986).

Postlarvae of tentaculariid trypanorhynchs are common parasites of cephalopods (Palm 1997a). Kinne (1990) listed five different Nybelinia species from squid, namely N. africana, N. bisulcata, N. lingualis, N. surmenicola and N. yamaguitii, and together with N. anthicosum, six Nybelinia species as infesting cephalopods. In the present study, a similar parasite fauna was found in the fish and in Todarodes angolensis. Cephalopods can be considered versatile predators that feed on most available food items (Rodhouse and Nigmatullin 1996). Therefore, the similar parasite fauna indicates that the squid served as a paratenic host for N. africana, N. anthicosum and N. yamaguitii off the coast of Mozambique.

Beveridge and Campbell (1996) listed about 43 Nybelinia species, and in the present study, 47 species descriptions were considered. N. beveridgei sp. nov. is described here, Chandra and Hanumantha Rao (1985) described N. gopalai and Yang et al. (1995) described N. rhynchobatis. The descriptions of N. macrocephala by Asmi (1983, cited in Bilqees and Khurshid 1987) and N. trisulcata in Reimer (1980) were not included, because the description of Asmi was never published and N. trisulcata, listed in Reimer (1980) as being described in Subhapradha (1955), refers to Nybelinia sp. in Subhapradha (1955, pp. 48–49).

It was not described under the name N. trisulcata and the morphological characters are similar to those from N. oodes Dollfus, 1960.

The first workable classification of species within the genus Nybelinia was presented by Dollfus (1960), amending his subdivision of the genus into the two subgenera Nybelinia and Syngenes (Dollfus 1942). While the characters “different kind of hooks on tentacle surfaces and characteristic basal armature” appear to be useful for species subdivision, the characters “width of tentacle and bulb ratio” are of dubious value. The width of the tentacles can vary in different parts of the tentacles and some species described can be placed in more than one section. N. gopalai has a tentacle between 19 μm wide in the basal and 15 μm in the metabasal region of the tentacle, therefore not fitting in any of the ranges proposed by Dollfus (1960). N. nipponica has a tentacle width of 30–60 μm (Yamaguti 1952), which corresponds to both Sections 1 and 2. Similarly, N. arguillum, with a tentacle width of 30–75 μm (Yamaguti 1952), falls between Sections 1 and 2. The bulb ratio (BR) can be variable. For example, N. robusta was found to have a ratio of 4.4:1 in the present study, in contrast to 3.6:1 reported in the original description (Linton 1890). Similarly, the BR of different varieties of N. africana range between 2.6:1 and 3.4:1 (Dollfus 1960).

Species such as N. anantaramanorum Reimer, 1980 and N. gopalai Chandra and Hanumantha Rao, 1985 do not fit into any of the sections suggested by Dollfus (1960). To simplify further taxonomic studies within the genus, a new subdivision of 43 adequate described Nybelinia species is proposed on the basis of the following three main characters: (a) metabasal tentacular armature, (b) tentacles with or without a characteristic basal armature, and (c) size of basal hooks in comparison to metabasal hooks.

I Metabasal tentacular armature homeoacanthous homeomorphous (Homeoacanths Type I in Campbell and Beveridge 1994)

A – Without characteristic basal armature
a – Size of basal hooks smaller than metabasal hooks: N. aequidentata, N. anthicosum, N. edvinlintoni, N. goresensis, N. lingualis, N. palliata, N. riseri, N. sphyrnae, N. thysites
c – Size of basal hooks larger than metabasal hooks: N. basimegaacantha

B – With characteristic basal armature
a – Size of basal hooks smaller than or equal to metabasal hooks: N. africana, N. anguillae, N. bisulcata, N. erythraea, N. indica, N. manazo, N. perideraeus, N. robusta
b – Size of basal hooks larger than metabasal hooks: N. gopalai

II Metabasal tentacular armature homeoacanthous heteromorphous (Homeoacanthus Type II in Campbell and Beveridge 1994)

A – Without characteristic basal armature
a – Size of basal hooks smaller than metabasal hooks: N. alloioica, N. cediei, N. estingmena, N. eureia, N. karachii, N. punctatissima, N. senegalensis
b – Size of basal hooks equal to or larger than metabasal hooks: N. dakari
B - With characteristic basal armature
a - Size of basal hooks smaller than or equal
to metabasal hooks: N. beveridgei, N. herdmari, N. nipponica, N. rouget-
campanae, N. yamagutii

Nybelinia beveridgei sp. nov. is similar to four
species in Group IIb, sharing the homeoacanthous
and heteromorphous tentacular armature together
with a characteristic basal armature and smaller or
equal basal hooks than metabasal hooks. However,
N. beveridgei clearly differs from the other species in
the section by having a homeomorphous basal armature
and characteristically shaped tentacular hooks. Not
included in this list are the following four species of
uncertain status: N. conchri, because of its poor
description (Guiart 1935); N. infundata, because of its
poor description (Molin 1858) and the synonymy of
this species with N. lenguadis (Dollfus 1942); N.
lamontae, because of its poor description (Nigrelli
1938) and the similarity of this species to Tentaculadia
coryphaenae Bosc, 1797; and N. narinaro MacCallum,
1917, owing to the synonymy of this species with N.
robusta (Dollfus 1930). Following Campbell and
Beveridge (1994), the division of the genus into two
subgenera Nybelinia and Syngenes by Dollfus (1942)
was not followed as a result of the lack of informa-
tion on strobila characters of most Nybelinia species
(see Beveridge and Campbell 1996). Similarly, the
subdivision of the genus into the Nybelinia Poche,
1926 and Pleronybelinia, described by Sezen and
Price (1969), was not followed, corresponding to

The present study has demonstrated that the genus
Nybelinia consists of several subgroups of species
with corresponding morphological characters, which
might warrant a separation of the genus into several
different subgenera. However, two main reasons can
be given against the erection of subgenera with the
current stage of knowledge. A revision of the whole
genus Nybelinia is needed to ensure the validity of
many species within the genus. Considering the high
variation of scolex morphology within a single try-
panorhynch species (Palm et al. 1993) and the minor
difference between several species (especially see
Dollfus 1960), some species might be solely variations
of earlier described species. The second reason is the
lack of knowledge on strobilar characters and the small
number of useful taxonomic characters available
using scolex morphology. A total of 12 different
characters was used in the attempt to analyse the
genus within a cladistic framework. However, the
characters appear to be insufficient for analysing the
genus, and as more species were added, the tree became
more and more unstable.

Within the Trypanorhyncha, the genus Nybelinia
remains the most difficult genus to study. However,
this contrasts with its obviously enormous distribution
in the world oceans, together with great abundances
in different geographical regions. Further studies on
species within the Nybelinia are encouraged, which
should give further insight into understanding of the
development of different types of tentacular armatures
within the genus. This can be seen as essential for
future classifications within the Tentaculaiidae as
well as within the whole order.

ACKNOWLEDGEMENTS

We thank Dr I. Beveridge of the University of
Melbourne, Australia, for revising a draft of the
manuscript.

LITERATURE CITED

ARTHUR, J. R., MARGOLIS, L., WHITAKER, D. J. and T. E.
McDONALD 1982 — A quantitative study of economically
important parasites of walleye pollock (Theragra chalcogramma)
from British Columbian waters and effects of post-
mortem handling on their abundance in the musculature. Can.

BATES, R. M. 1990 — A checklist of the Trypanorhyncha

BEVERIDGE, I. 1990 — Taxonomic revision of Australian
Eutetrarhynchidae Guiart (Cestoda: Trypanorhyncha). Invert.
Taxon. 4: 785–845.

BEVERIDGE, I. and R. A. CAMPBELL 1996 — New records and
descriptions of trypanorhynch cestodes from Australian fish-

BILQIES, F. M. and N. KHURSHID 1987 — Trypanorhyncha from

BOTHA, L. 1986 — Major endoparasites of the Cape hakes
Merluccius capensis and M. paradoxus, with brief notes on

CAMPBELL, R. A. and I. BEVERIDGE 1994 — Order
Trypanorhyncha Diesing, 1863. In Keys to the Cestode
Parasites of Vertebrates, Khalil, L. E., Jones, A. and R. A.

CHANDRA, K. J. 1986 — Nybelinia indica n. sp. (Cestoda: Trypanorhyncha) from teleost fishes off Waltair coast, Bay of

CHANDRA, K. J. and K. HANUMANTHA RAO 1985 — Two new
species of Tentaculaiidae Poche, 1926 (Cestoda: Trypanorhyncha) from marine fishes of Waltair. Riv.

of the world. An annotated and illustrated catalogue of shark
species known to date. (1) Hexanchiformes to Lamniformes.
(2) Carcharhiniformes. F.A.O. Fish. Symp. 125: 1–249,
250–655.

CUVIER, G. 1817 — Le règne animal distribué d’après son
organisation pour servir de base à l’Histoire naturelle des
animaux et d’introduction à l’anatomie comparée. 4. Paris. 255

