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Abstract Indonesia is the world’s richest country re-
garding reef fish diversity. Nevertheless, the reef ich-
thyofauna of the Indonesian Archipelago remains
poorly known, primarily due to a lack of sampling.
Coral reefs in the Kepulauan Seribu Marine National
Park close to the Indonesian capital Jakarta are under
threat bymany destructive activities that trigger a loss of

habitat and species diversity. This communication: (1)
describes the reef fish community structure from three
distinct reef habitats in the Pari Island group dominated
by Acropora branching corals (ACB), foliose corals
(CF) and massive corals (CM), using a number of com-
munity properties such as numerical abundance, species
richness, diversity, and multivariate similarity; (2)
examines the temporal variation of the fish community
from the three habitats; and (3) discusses possible impli-
cations for the monitoring of qualitative changes in coral
reef systems on small islands. During this study, a total
of 13 536 individual fishes were counted, representing
205 species belonging to 36 families. In terms of species
richness, Pomacentridae was the dominant fish family in
ACB and CF sites (40 % and 48.6 %, respectively), and
Labridae (27.4 %) was the dominant family in the CM
plots. The most species-rich habitat was ACB with 125
species (with Amblyglyphidodon curacao as the most
characteristic species), followed by CM and CF with
117 (Thalassoma lunare) and 79 species (Pomacentrus
alexanderae), respectively. Average Shannon-Wiener
diversity (ln basis) ranged from 2.0–2.9 (ACB), 2.4–
3.1 (CF), and 2.1–3.0 (CM), with no significant differ-
ence between growth forms. Abundance, species rich-
ness and diversity showed significant seasonal
variability, but the effects differed between habitats.
Multivariate analysis of the reef fish community was
able to detect significant differences between species
composition and diversity of the reef fish community
between sites with different coral growth forms at Pari
Island, both when based on species abundances and
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when aggregated according to trophic categories. It thus
constitutes a useful tool to detect qualitative differences
of the species-rich Indonesian coral reef ecosystems.

Keywords Biodiversity . Habitat preference . Trophic
level . Coral triangle .Multivariate analysis . Fish-
habitat association

Introduction

Coral reefs are tropical ecosystems that display high
biodiversity, belong to the most attractive shallow-
water ecosystems in the world. Fishes reach their great-
est biodiversity in coral reef ecosystems (Allen and
Werner 2002), particularly in Indonesia. Coral reefs in
Indonesia harbour approximately 590 species of corals
(Veron 2002) and over 2000 species of reef fish (Allen
and Adrim 2003). While the reefs of Indonesia harbour
one of the richest fish assemblages on the planet and
sustain the livelihoods of millions of people, they are
also among the most threatened by anthropogenic fac-
tors (Burke et al. 2011).

The coral reef structure and its complexity resulting
from a high diversity of coral growth forms provide a
variety of habitats for thousands of fishes (Luckhurst
and Luckhurst 1978; Beukers and Jones 1998;
Bellwood et al. 2005). Each coral species has different
life-forms, closely related to the hydrological regime
and sunlight exposure at the respective locality (Baker
and Weber 1975; Pandolfi and Greenstein 1997), and
coral reefs thus display a high spatial variability in terms
of species composition and topographic complexity.
Reef fish often cluster on specific corals, form distinct
communities (Adrim and Hutomo 1989; Chabanet et al.
1997; Friedlander and Parrish 1998), and generally have
limited movement compared to other marine vertebrates
of the same size (Kramer and Chapman 1999). They
utilize corals as a territory (Waldner and Robertson
1980; Patton 1994), source of food (Reese 1981), place
of refuge (Carr and Hixon 1995), and reproduction
(Almany et al. 2007).

Changes in the abundance of particular groups of
fish or of fish community composition have been used
as indicators for reef habitat quality (e.g. Hourigan et
al. 1988; Reese 1993; Roberts et al. 1988). Spatial
variability and complexity of coral reefs affect the
trophic structure of the fish community. For instance,
depletion in coral reefs has a direct effect to the

abundance of fishes which exclusively feed on coral
(Halford et al. 2004). However, only few of the spe-
cies found in a coral reef ecosystem depend specifi-
cally on scleractinian corals (Munday et al. 2007). On
the other hand, a reduction of coral cover, either by
natural or by anthropogenic factors, is often accompa-
nied by increases in algal abundance (Diaz-Pulido and
McCook 2002), which may trigger the appearance of
herbivorous fishes (Wilson et al. 2006). Consequently,
the presence or absence of specific indicator species
can detect environmental impact and change. Due to
their territorial behaviour, close association with the
benthic habitat in reefs, conspicuousness, and abun-
dance in reef fish communities, wrasses (Labridae),
butterflyfishes (Chaetodontidae) and damselfishes
(Pomacentridae) are considered the most useful indi-
cator species for the assessment of coral reef condi-
tions (e.g. Crosby and Reese 1996; Ormond et al.
1996; Lewis 1997a). Additional information can be
derived from groups particularly susceptible to fishing
pressure, such as groupers (Serranidae), or fulfilling
key functional roles, e.g. parrotfishes (Scaridae)
(Hodgson 1999). Several species live in close associ-
ation with the colonies of branching corals (Patton
1994; Chabanet et al. 1997), e.g. Chaetodon (Pratchett
et al. 2006), Chromis (Graham et al. 2006), Dascyllus
(Liberman et al. 1995), Thalassoma (Itzkowitz 1979),
and Pomacentrus spp. (Bergman et al. 2000). Some
members of other fish taxa show a similar strong
association with the reef habitat. For example, Scar-
idae are generally associated with massive corals
(Chabanet et al. 1997), as they feed on epilithic algae
growing on flat calcareous surfaces (Bellwood and
Choat 1990). Especially the availability of shelter sites
of appropriate sizes is important for the distribution of
coral reef fish (Friedlander and Parrish 1998).

The relationships between different fish species and
their required habitats have been studied in great detail
(e.g. Done 1982; Roberts and Ormond 1987; Chabanet
et al. 1997; Friedlander and Parrish 1998). However,
caused by difficulties to establish long-term observa-
tions that cover multiple years and/or long-term an-
thropogenic change, the effects that changes in the
composition of coral habitats have on the structure of
reef fish communities are less known. This is particu-
larly true for Indonesia, where systematic, long-term
coral reef monitoring efforts are largely absent. Sale
(1977) has predicted that reef fish communities have
an unstable structure at the species level, which
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implies that species composition at a certain site may
not return to its original state following natural or
anthropogenic disturbance. While some later studies
have observed reef fish communities to be largely
resilient to moderate levels of habitat disturbance
(Sano 2000; Booth and Beretta 2002), others found
that gradual declines in habitat quality or major dis-
turbances such as the widespread coral bleaching in
1998 can lead to considerable shifts in fish community
composition (Jones et al. 2004; Bellwood et al. 2006).
A thorough understanding of the coral reef ecosys-
tems, especially of the associated fish fauna and its
link to the benthic community, is thus critical for an
improved management of these vital resources. So far,
the reef fish community in the Indonesian Archipelago
remains poorly studied compared to coral reef areas in
neighboring countries, such as the Great Barrier Reef
(Tomascik et al. 1997). This communication: (1)
describes the reef fish community structure from three
distinct Indonesian reef habitats in the Pari Island
group (part of Kepulauan Seribu) dominated by
Acropora branching corals (ACB), foliose corals
(CF) and massive corals (CM), by using a number of
community properties such as numerical abundance,
species richness, diversity, evenness, multivariate
composition and relative abundance of trophic catego-
ries; (2) examines the temporal variation of the fish
community from these habitats; and (3) discusses pos-
sible implications of using fish community data for an
improved monitoring of changes in coral reef habitat
quality on small tropical islands. As few studies of the
reef fish community from the area are available to
date, the present study also sets a baseline for future
monitoring efforts.

Material and methods

Study sites

Pari Island together with four other coral cays (Burung,
Tikus, Kongsi, and Tengah Island) forms the Pari Island
group in the southernmost part of the Kepulauan Seribu
complex. It is located about 35 km north-northwest of
Jakarta and 18 km from mainland Java (05°51’S and
106°37’E), with an approximate circumference of 4 km
(Fig. 1). Pari Island is considered a fringing reef. While
some studies of the coral community of Pari Island have
been carried out in the 1980s (Brown and Suharsono

1990; Hoeksema 1991), the fish community of the area
remains poorly studied. The platform on which the Pari
Island group is situated has two large reef flat lagoons
with a depth of approximately 6 m (Tomascik et al.
1997). Seaweed farming by local people is carried out
in these lagoons. In the past, Kepulauan Seribu has
experienced considerable impacts from blast fishing
(Aktani 2003). Between 1920–2005, its coral composi-
tion has decreased due to long-term natural and anthro-
pogenic stress (van der Meij et al. 2010). Bleaching
resulting from ENSO (El Niño Southern Oscillation)
events in Pari Island, followed by the death mainly of
branching species of the genera Acropora and Pocillo-
pora, was observed as early as the 1980s (Brown and
Suharsono 1990). During the northwest monsoon from
November to March, Pari Island experiences a ‘wet’
season which is characterized by a lot of rain, rough
waves and wind, and a ‘dry’ season during the southeast
monsoon (June to September) (Rees et al. 1999). Tran-
sitional seasons usually occur in October/November and
April/May.

Data collection

The locations of the study sites were determined ini-
tially by manta tow and snorkelling, and observing the
coral reef conditions of the representative areas (3–7 m
depth). The study sites were selected based on size
allowing 3 replicates and the predominance of distinct
coral life-form categories (Acropora branching corals
(ACB), foliose corals (CF) and massive corals (CM),
Fig. 2). All sites were located along the southern reef
edge of the Pari Island group (Fig. 1). At each sam-
pling site, three replicate 5×5 m permanent quadrats
were established, marked by a buoy, and their location
recorded using GPS. The perimeter of each quadrat
was marked permanently using stakes and nylon
string. Replicate plots were approximately 10 m apart.
The quadrats were placed parallel to the coastline at
the selected sampling sites (ACB, CM, or CF).

During the first sampling period, the Permanent
Quadrat method (PQ) was used to assess the sessile
benthic fauna at the study sites. This method is a
detailed observation method for quantitative and qual-
itative benthic sampling (English et al. 1997). Coral
life-form categories were verified following English et
al. (1997). To describe benthic cover, each quadrat
(5×5 m) was divided into 25 individual 1×1 m units
using string PVC quadrats, which yielded a total of
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Fig. 1 Location of the Pari
Island group, north of
Jakarta, Java Island, Indo-
nesia. The map below shows
the position of Pari Island
group relative to Jakarta.
The location within Indone-
sia is shown in the inset on
the lower left. The sampling
sites will be referred to by
their initials throughout the
rest of the text (ACB, CM,
and CF)

Fig. 2 Three categories of coral life-forms at the sampling area: (a) branching Acropora coral (ACB), (b) foliose coral (CF), and (c)
massive coral (CM)
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225 1×1 m units across the three replicates within
each of the three habitat types. Each subunit was
photographed using a Nikonos 5 underwater camera
(20 mm lens). All images were processed with the
software ImageJ (Abramoff et al. 2004). Photographic
assessment of the habitat composition was conducted
only once at the beginning of the study. However, no
singular event that would have affected only particular
transects (e.g. corallivore outbreak, anchor damage)
was observed throughout the study. Based on visual
estimation of the habitat during each underwater cen-
sus, benthic cover was assumed to not have changed
significantly throughout the study period.

Reef fish communities were assessed by underwater
visual census (UVC) (English et al. 1997). In an attempt
to reduce daily variability of fish density data (caused by
differences in nocturnal and diurnal behaviour), sam-
pling excluded the high activity periods of early morn-
ing and late afternoon (Colton and Alevizon 1981;
English et al. 1997). Sampling was carried out consec-
utively at the different sites between 09:00 and 16:30
from August 2003 to May 2004. Each quadrat was
surveyed once during each sampling time. During each
census, the observer waited for at least 10 min before
beginning with the record of fish data inside the PQT in
order to allow the fishes to resume normal behaviour
(Brock 1982; Halford and Thompson 1994). Fish counts
were stationary, with the observer taking a position at
the edge of the quadrat (consistent over consecutive
samplings) that allowed for the best overview of the
quadrat for counting. Only individuals within the quad-
rat, up to a height of 4 m above the substrate, were
counted. The approximate duration of one fish census
was limited to 15–20 min by using a watch for each
transect. Each individual (cryptic and large pelagic spe-
cies were excluded) was counted and identified to spe-
cies level. Fish recruits up to a size of 3–5 cm
(depending on species) were excluded from the counts.
To study seasonal variability, a total of six observations
were made during the late dry season (13.–14.08.2003,
19.–20.09.2003, 23.–24.10.2003), the rainy season
(30.–31.12.2003, 5.–6.03.2004), and the early dry sea-
son (11.–12.05.2004). After data collection, reef fish
identification was confirmed by using standard fish
identification books (i.e. Randall et al. 1990; Kuiter
1992; Allen 2000). The trophic level of fish species
was classified into one of five categories (carnivores,
planktivores, omnivores, herbivores, and corallivores)
using FishBase (Froese and Pauly 2010).

Data analysis

The average proportion of live coral cover at the three
sites was compared using Pearson’s chi-square statistic
with the program JMP 7.0 (SAS Institute 2007). The
community Shannon-Wiener diversity index H’ was
calculated on a ln basis (Shannon and Weaver 1949;
Magurran 1988). Abundance, species richness and
community diversity were compared among sites us-
ing repeated-measures ANOVA in the statistical pack-
age STATISTICA 7.0. All data met assumptions of
normality (Kolmogorov – Smirnov test) and homoge-
neity of variances (HOV, Brown Forsythe test). In
order to assess seasonal effects, general linear models
with Standard Least Squares fitting were constructed
in JMP. The parameters abundance, species richness
and species diversity were included as response vari-
ables. Separate models were constructed for each site
and parameter. The uneven number of sampling times
per season precluded using a single categorical vari-
able to account for effects of ‘season’. As independent
variables, the models thus contained two continuous
binary dummy variables to account for seasons, and
five binary dummy variables to account for individual
sampling times. Due to the unbalanced design, indi-
vidual effect tests could not be conducted, and the
values from the model parameter estimation were used
as indicators of significant effects.

Multivariate analysis of the fish community data
was conducted using the program PRIMER 5.2.9
(Kruskal 1964; Clarke and Gorley 2001). Fish abun-
dance and trophic category data were fourth-root
transformed prior to analysis to reduce the influence
of some overly abundant species and give more weight
to rare species while retaining the information value of
relative abundances, an approach frequently used in
the multivariate analysis of community data (Field et
al. 1982; Clarke and Green 1988). Multivariate analy-
sis of similarity (ANOSIM) based on both the entire
fish community and on trophic categories was used to
determine differences between sites. A two-way
crossed design with the factors treatment and sampling
month was used to limit permutations to take place
within the same treatment (for time effects) and sam-
pling month (for treatment effects). The maximum
number of permutations was set at 999.

SIMPER (similarity percentages – species contri-
bution) was used to determine fish species character-
istic for each growth form (Clarke 1993). Data were
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standardized and fourth-root transformed (see above).
The cut-off percentage used was 90 %.

Non-metric Multidimensional Scaling (MDS) was
performed to visualize differences in fish communities
from the different coral life forms (Shepard 1962;
Kruskal 1964). MDS was based on Bray-Curtis simi-
larities, and 100 restarts were used for the calculations.

Results

Reef fish community structure in different habitats

The average benthic community composition at the
three sampling sites is shown in Table 1. Acropora
branching corals covered 68.5±8.7 % of the ACB
plots, while the coverage of foliose and massive corals
in the CF and CM plots was 70.0±2.0 % and 47.1±
11.3 %, respectively. The coverage with other live
hard corals was low at all sites, but dead corals made
up almost one quarter of the substrate in the CM plots.
The relative amount of live coral compared to other
substrate differed significantly between the three sites
(Pearson chi-square, χ2013.31, p00.0013, df02).

A total of 13 536 individual fishes were counted,
belonging to 205 species and 36 families. For the
Acropora-branching coral plots, a total of 125 fish
species was recorded, while a total of 79 fish species
was observed in the foliose coral plots, and a total of
117 fish species was recorded from the massive coral

plots. The composition of the 5 most diverse fish
families that were observed in the ACB, CF, and CM
plots is given in Table 2. The most abundant families
in the ACB plots were the Pomacentridae (damsel-
fishes), followed by the Labridae (wrasses). The most
abundant family in the CF plots again were the Poma-
centridae (damselfishes), followed by Labridae
(wrasses) and Chaetodontidae (butterflyfishes). The
most abundant family in the CM plots were the Lab-
ridae (wrasses), followed by Pomacentridae (damsel-
fishes) and Scaridae (parrotfishes). Overall, the most
common families were the Pomacentridae and Labri-
dae, a pattern also observed at other locations in Indo-
nesia (Ferse 2008).

No significant differences in fish abundance, diver-
sity or species richness were found between the habitat
types (Table 3). Fish abundance ranged from 139±7 to
490±67 ind/25 m2, the diversity index (H’) ranged
between 2.04±0.22 and 3.07±0.04, and species rich-
ness ranged from 16.3±1.2 to 31.7±1.5 species/25 m2

over the entire study period.

Temporal variation of the fish community
from different habitats

The temporal variation in Shannon-Wiener diversity
indices of the fish communities, average species rich-
ness, and average fish abundance is shown in Fig. 3.
Fish abundance, species richness and diversity all
varied significantly over the study period, and the
effect of time on abundance and species richness dif-
fered between habitats (Table 3). The increase from
the wet to the early dry season was significant for all
three parameters in the Acropora-branching coral plots
(Table 4). There were two sampling times with a slight
increase in species richness, in late dry season 2003
and early dry season 2004 (transition periods). The
different sampling periods can be characterized as
follows. In all plots, fish abundance, species richness
and diversity value were high in the early dry season,
while in the rainy season, they were low (Table 5). In
the massive coral plots, season did not have a signif-
icant effect on fish abundance (Table 4), but species
richness and diversity were significantly lower during
the wet than during the dry seasons (Table 5). In terms
of trophic groups, the CF plots showed little changes
throughout the year, while the other two sites
exhibited more temporal variability (Fig. 4).

Table 1 Benthic community cover per life-form category (in %
± SE, ACB Branching Acropora Coral, CF Foliose Coral, CM
Massive Coral, HC Hard Corals, DC Dead Corals, DCA Dead
Coral with Algae, SP Sponge, SC Soft Corals, OT Others)

CATEGORIES ACB CF CM

ACBa 68.5±8.7 – –

CFa – 70.0±2.0 –

CMa – – 47.1±11.3

Other HC 7.2±1.5 8.2±2.2 4.3±0.3

DC 1.1±0.5 0.6±0.4 13.7±4.5

DCA 4.0±2.4 6.5±1.1 13.7±5.5

SP 0.3±0.2 0±0 0±0

SC 0±0 0.8±0.5 1.8±0.3

OT 0.9±0.1 0.5±0.4 2.7±1.2

Abiotic 18.0±7.3 13.3±2.7 16.7±7.4

a only shown for the plots in which this growth form dominated
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Multivariate analysis based on fish abundance
and trophic categories

Fish community composition differed significantly
between the three habitat types (Table 6). A significant
effect was found both in terms of species composition
and in terms of trophic categories. Three species living
in close association with Acropora corals, Amblygly-
phidodon curacao, Chromis analis and Abudefduf
sexfasciatus (Pomacentridae), were most characteristic
for this habitat (Table 7). Pomacentrus alexanderae
(Pomacentridae), Amblyglyphidodon curacao (Poma-
centridae) and Labroides dimidiatus (Labridae) were
the species most characteristic for coral foliose habitat,
while in the massive coral habitat, Thalassoma lunare
(Labridae), Caesio cuning (Caesionidae) and Scarus
chameleon (Scaridae) were the most characteristic
species (Table 7).

In terms of trophic groups, the ACB and CF plots
were initially relatively similar (Fig. 4). In the CF plot,
omnivores were the most dominant group throughout
the year. In the ACB plots, omnivores dominated
initially, but were replaced by carnivores as the most
dominant group from January on. In the CM plots,
herbivores were relatively more abundant than in the
other plots, and trophic composition was more vari-
able throughout the year (Fig. 4).

The significant differences in fish communities
between habitat types in terms of species abundance
and trophic composition detected by the ANOSIM
(Table 5) are visible in the MDS plots (Fig. 5). The
community samples from CM clearly separate from
the ACB and CF samples, while the latter are clus-
tered more closely together. However, this pattern
was more pronounced for fish abundance, while
community composition based on trophic categories
showed a less clear separation, reflecting the lower ρ
value of the ANOSIM for this parameter (Table 6).

Discussion

Reef fish community structure

The present study describes the reef fish community at a
small island ecosystem close to the Kepulauan Seribu
Marine National Park in Indonesia. The present study
data confirm the high species richness of coral reef
fishes in the Indonesian part of the coral triangle. Spe-
cies richness at Pari Island (205 species) is in a range
similar to that observed for other Indonesian localities,
such as the Togean Islands and Weh Island (Allen and

Table 2 Composition of the 5 most diverse fish families at the three study sites

Fish Family Common Name ACB CF CM

Species % of total species Species % of total species Species % of total species

Pomacentridae Damselfishes 42 40.0 36 48.6 21 22.1

Labridae Wrasses 23 21.9 20 27.0 26 27.4

Apogonidae Cardinalfishes 10 9.5

Chaetodontidae Butterflyfishes 8 7.6 4 5.4

Scaridae Parrotfishes 16 16.8

Serranidae Groupers 10 10.5

Lutjanidae Snappers 4 5.4 5 5.3

Nemipteridae Spinecheeks 5 4.8 3 4.1

Table 3 Results of repeated-measures ANOVA for abundance,
species richness, and diversity of fish assemblages (*p<0.05,
**p<0.01, ***<0.001, n.s. not significant)

Variable Factor F Df p

Abundance Site 0.3442 2 n.s.

Month 9.9530 5 ***

Month*Site 2.7922 10 *

Species Richness Site 2.0749 2 n.s.

Month 11.9314 5 ***

Month*Site 3.4401 10 **

Shannon-Wiener
index (H’)

Site 3.18 2 n.s.

Month 5.73 5 ***

Month*Site 1.62 10 n.s.
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Werner 2002). However, these values are distinctly
higher than those reported from other marine tropical
ecosystems, such as the Marshall Islands (178) or the
Caribbean (122) (Gladfelter et al. 1980), and the Gulf of
Aqaba in the Red Sea (121) (Khalaf and Kochzius
2002). The presence of a high biodiversity of corals
around Pari Island, combined with a complete tropical
coastal ecosystem in the area (consisting of mangroves,
seagrass beds and associated coral reefs), helps to ex-
plain the general high species richness in the study area.

At the level of the experimental plots, habitat
appears to have played a different role with regard to
the fish community. The growth form of corals influ-
ences the structural complexity of the benthic habitat,

which in turn can influence the associated fish com-
munity (Gratwicke and Speight 2005a). A positive
correlation with the structural complexity of a coral
reef habitat has been reported for fish abundance (e.g.
Friedlander et al. 2003; Chittaro 2004; Walker et al.
2009), the number of species (e.g. Gratwicke and
Speight 2005b; Dominici-Arosemena and Wolff
2006; Wilson et al. 2007), biomass (e.g. Friedlander
et al. 2003), and species diversity (e.g. Molles 1978;
McCormick 1994; Öhman and Rajasuriya 1998).
However, in the present study, no differences were
found in abundance, species richness and diversity
between the more structurally complex habitat domi-
nated by branching Acropora corals, and the foliose
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and massive coral plots. Although the three habitat
types arguably differed in terms of their structural
complexity (branching corals offering more microha-
bitats than massive corals), this difference was not
reflected in the univariate fish community parameters.
Niche availability or habitat diversity thus does not
appear to have played a role at the scale of the exper-
imental plots. Similarly, the differences in the amount
of live coral cover between the three sites did not have
a manifest impact on any of the univariate parameters.
Their usefulness as indicators for habitat quality thus
appears limited when derived from plots of the size
used in this study. Furthermore, it indicates that at the
level of the study plots, the fish communities were not
structured by habitat-mediated factors such as preda-
tion impact or available space, but that different fac-
tors such as recruitment or migration were playing a
stronger role.

On the other hand, specific fish families were par-
ticularly associated with certain habitat types. As
shown, Scaridae and Lutjanidae were found mainly
in the massive coral site, while Lutjanidae and Apo-
gonidae were observed only in the foliose and branch-
ing Acropora coral sites, respectively. Habitat quality,
rather than availability of space and shelter, resulted in
a different composition of the community in the three
habitat types. Thus, differences in the type of coral
coverage may not be detected by an assessment of fish
diversity or abundance, while they may at the same
time be visible in terms of the community composi-
tion. Habitat fidelity appears to have been highest in
the CF plots, which had low variability in abundance
and species richness during each census, and lowest in
the ACB plots, were variability was highest. However,
this may at least partially be a result of higher small-
scale heterogeneity in the ACB plots – in this case,

Table 4 Results of the general linear model testing for seasonal effect on fish assemblages in the three habitats. Significant differences
are indicated by an asterisk

Parameter Season ACB CF CM

t-ratio p t-ratio p t-ratio p

Abundance late dry vs. wet 1.97 0.0723 1.36 0.1983 1.50 0.1599

late dry vs. early dry 2.16 0.0519 5.64 0.0001* 0.24 0.8139

wet vs. early dry 4.13 0.0014* 7.00 <0.0001* 1.26 0.2325

Species richness late dry vs. wet 2.62 0.0226* 1.71 0.1128 2.19 0.0490*

late dry vs. early dry 1.93 0.0772 5.91 <0.0001* 0.59 0.5665

wet vs. early dry 4.55 0.0007* 4.20 0.0012* 2.78 0.0167*

Diversity late dry vs. wet 2.17 0.0505 0.08 0.9361 3.46 0.0047*

late dry vs. early dry 0.08 0.9354 4.50 0.0007* 0.64 0.5312

wet vs. early dry 2.26 0.0435* 4.41 0.0008* 4.11 0.0015*

Table 5 Seasonal values of fish
abundance, species richness and
diversity (mean ± SE)

Habitat Season Abundance
(ind/25 m2)

Species richness
(species/25 m2)

Diversity (H’)

ACB Late dry 245.67±38.36 27.00±2.20 2.75±0.05

Rainy 194.33±62.84 20.00±2.12 2.14±0.34

Early dry 490.00±66.91 30.33±0.33 2.75±0.14

CF Late dry 219.00±16.07 19.78±0.81 2.58±0.05

Rainy 201.50±23.40 20.33±2.05 2.50±0.15

Early dry 376.00±16.07 29.00±0.58 3.07±0.04

CM Late dry 269.78±48.05 25.78±2.63 2.71±0.12

Rainy 197.50±44.90 18.50±1.82 2.43±0.14

Early dry 256.00±39.95 28.00±4.00 3.00±0.13
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using plots larger than 5×5 m2 may have resulted in
less instantaneous variability. However, as shown by
the similar seasonal trends in all plots and the high
seasonal compared to instantaneous variation, the ef-
fect of plot size seems small compared to temporal and
site-specific effects.

A significant correlation was found between the
community composition and coral habitat type. The

specialization of fish according to the coral growth
form is of great interest for coral reef ecologists,
especially concerning the connection between the fish-
es and their feeding habit (Randall 1974; Hourigan et
al. 1988; Cox 1994). Feeding specialization among
coral fishes can reduce competition within a reef
(Gladfelter and Johnson 1983; Ross 1986), thus en-
abling higher species diversity, and plays an important
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Fig. 4 Distribution and mean composition of reef fish at the sampling sites based on trophic categories

Table 6 Results of a crossed two-way ANOSIM within sites based on abundance of all species and trophic categories (*p<0.05, **p<
0.01, n.s. not significant)

Relative abundance Trophic categories

Test Factor Test pairs ρ p (ρ) Test Factor Test pairs ρ p (ρ)

Global pairwise Site 0.612 ** Global pairwise Site 0.325 **

ACB, CF 0.383 ** ACB, CF 0.278 **

ACB, CM 0.778 ** ACB, CM 0.315 **

CF, CM 0.691 ** CF, CM 0.444 **

Global pairwise Time 0.252 ** Global pairwise Time 0.175 **

Aug, Sep 0.580 ** Aug, Sep 0.099 n.s.

Aug, Oct 0.358 * Aug, Oct 0.309 n.s.

Aug, Dec 0.580 ** Aug, Dec 0.284 **

Aug, Mar 0.642 ** Aug, Mar 0.358 *

Aug, May 0.235 n.s. Aug, May 0.469 **

Sep, Oct 0.358 * Sep, Oct 0.062 n.s.

Sep, Dec 0.111 n.s. Sep, Dec 0.000 n.s.

Sep, Mar 0.346 * Sep, Mar 0.086 n.s.

Sep, May 0.025 n.s. Sep, May 0.284 *

Oct, Dec −0.148 n.s. Oct, Dec 0.062 n.s.

Oct, Mar 0.481 ** Oct, Mar 0.346 *

Oct, May 0.185 n.s. Oct, May 0.346 *

Dec, Mar 0.272 n.s. Dec, Mar 0.099 n.s.

Dec, May −0.099 n.s. Dec, May 0.049 n.s.

Mar, May 0.148 n.s. Mar, May 0.346 **
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role for the structure of the fish community. A positive
relationship has been described for species that depend
on coral for food or shelter, such as corallivorous
chaetodonts (Cox 1994), with other groups being more
related to variables such as water depth or algal abun-
dance (Nanami et al. 2005; Feary et al. 2007a). While
the fish diversity was high at all sampled sites, there
was a clear difference in species composition accord-
ing to the trophic categories. Most similar were the

sites ACB and CF, which had relatively similar struc-
tural complexity, where the fish community mainly
consisted of carnivorous, omnivorous and planktivo-
rous fish. At CM, a high number of herbivorous and
planktivorous fish was observed. This would charac-
terize the ACB site as a refuge for mainly carnivorous
fish, CF as habitat of omnivorous fish, and CM for
herbivorous and planktivorous fish, with some migra-
tion among habitats. The present high composition of

Table 7 Composition of 10 most high species contribution within each sampling site using SIMPER (Similarity Percentages – Species
contribution)

Species per site Av. Abundance Av. Similarity % Contribution Cumulative %

ACB, average similarity: 27.46

Amblyglyphidodon curacao 14.61 2.88 10.5 10.5

Chromis analis 13.89 2.27 8.27 18.77

Abudefduf sexfasciatus 15.22 1.95 7.11 25.88

Scolopsis bilineatus 4.5 1.41 5.15 31.03

Thalassoma lunare 4.83 1.21 4.42 35.45

Chaetodon octofasciatus 2.72 1.19 4.35 39.8

Labroides dimidiatus 2.89 1.11 4.05 43.85

Chromis atripectoralis 5.89 1.08 3.92 47.78

Abudefduf vaigiensis 9.06 0.87 3.15 50.93

Chaetodontoplus mesoleucus 2.06 0.84 3.05 53.98

CF, average similarity: 40.37

Pomacentrus alexanderae 38.56 6 14.86 14.86

Amblyglyphidodon curacao 19.89 4.84 11.99 26.85

Labroides dimidiatus 4.83 3.48 8.62 35.47

Abudefduf sexfasciatus 16.44 2.91 7.22 42.69

Chaetodon octofasciatus 4.39 2.36 5.85 48.53

Thalassoma lunare 6.39 1.72 4.26 52.79

Halichoeres purpurescens 5.56 1.55 3.83 56.63

Neoglyphidodon thoracotaeniatus 6.89 1.4 3.46 60.09

Chromis atripectoralis 8.28 1.37 3.38 63.47

Dischistodus prosopotaenia 5.39 1.24 3.06 66.54

CM, average similarity: 28.47

Thalassoma lunare 6.17 2.66 9.33 9.33

Caesio cuning 22.39 2.48 8.71 18.04

Scarus chameleon 7.72 1.79 6.29 24.33

Scarus forsteni 11 1.63 5.73 30.05

Chaetodon octofasciatus 2 1.27 4.48 34.53

Amblyglyphidodon curacao 6.17 1.23 4.32 38.85

Pomacentrus alexanderae 8.22 1.21 4.26 43.11

Abudefduf sexfasciatus 7.22 1.18 4.15 47.26

Labroides dimidiatus 2.56 1.16 4.09 51.35

Scolopsis bilineatus 3.83 1.06 3.71 55.07
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herbivorous fishes in the CM plots might be explained
by the high percentage of dead coral and algae, attract-
ing herbivores such as parrotfish. Similarly, reef zoo-
plankton shows an affinity for particular substrate
types (Alldredge and King 1977), which could explain
the differences in the relative abundance of plankti-
vores between sites. However, while there was a cor-
relation between habitat types and fish community, it
is difficult to infer causality from this, as all plots from
one site were of the same habitat type. Factors such as
water currents and visibility may influence both the
coral species composition (Jokiel 1978) as well as the
associated fish fauna (Williams 1991). The fish fauna
in the CM habitat mainly consisted of species that are
associated with reefs within a high energy (i.e. cur-
rents and wave exposure) environment. As shown by
the ANOSIM and MDS plots, the highest difference in
community composition was between this site and the
ACB and CF sites, both of which were located within
a relatively low energy environment. Thus, both hab-
itat and fish communities in this study may be the
result of environmental factors acting at the respective
sites. However, as shown in studies simultaneously
covering a range of environmental variables and hab-
itat types, benthic community composition plays a
significant role in shaping the associated fish commu-
nity (e.g., Nguyen and Phan 2008), and it is thus likely
that habitat played a similar strong role in shaping the
fish community here.

Temporal variation of the fish community
from different habitats

Although the assessed univariate community parame-
ters could not clearly distinguish between the three
sampling sites, clear differences were observed

between the dry and the rainy season. Fish communi-
ties can vary considerably according to seasonal vari-
ation (Aktani 2003; Chittaro and Sale 2003). The high
species richness and abundance of reef fishes in Octo-
ber 2003 and May 2004 might be caused by the
transitional monsoon, which features moderate physi-
cal environmental conditions in comparison to the
Northwest/Southeast Monsoon (dry season). By con-
trast, species richness and diversity as well as abun-
dance decreased during the West Monsoon (rainy
season), when environmental conditions were rougher.
Within the dry season and in the transition period
preceding and following it, more fishes and fish spe-
cies were observed on all sites. At Pari Island, the
rainy season causes heavy winds and waves that cause
high turbidity at the sampling sites, while the dry
season is dominated by weak currents and clear water.

Several factors may have contributed to the ob-
served seasonal patterns. The observed increases in
periods of higher visibility may have partially been
an observer-induced bias. Sale and Douglas (1981)
concluded that the higher number of species and indi-
viduals recorded in some of their censuses was at least
partially caused by increased water clarity. However,
Bohnsack and Bannerot (1986) did not observe any
significant effects of visibility on abundance or species
richness. Thus, the observed variation might be caused
by seasonal migration of some species (such as Acan-
thuridae and Carangidae) that are not limited to a
specific territory or habitat, resulting in different spe-
cies numbers and abundances of the fish community.
Chittaro and Sale (2003) found substantial seasonal
changes in fish abundance in an Australian fish com-
munity, caused mainly by temporal variation in her-
bivorous and carnivorous species. However,
Acanthuridae were only observed during the October

Fig. 5 MDS plot of fish communities at the Pari Island, showing pattern of association among 205 species based on abundance (a) and
trophic categories (b) during the entire study period among sites
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and December census in the ACB and CM plots.
Similarly, Carangidae were only observed in October
in the CM plots. These two groups may be classified
as transitional species, or migrating species. Yet, they
do not account for the high abundance and species
richness observed in June. Rather, this peak may have
been the result of recruitment pulses and post-
settlement migration. Post-settlement movements can
play a significant role in temporal patterns in commu-
nity composition (Lewis 1997b). Even though small
recruits were not included in the counts, seasonal
recruitment pulses are still likely to introduce temporal
patterns in the abundance of particular species. In a
study in Sulawesi/Indonesia, strong recruitment pulses
of labrids and pomacentrids were observed in May/
June (Ferse 2008). Juveniles of many fish species
utilize the shelter provided by live coral, and are often
associated with more heterogeneous coral growth
forms (e.g., Feary et al. 2007b). An indicator for
seasonal recruitment is found in the fact that abun-
dance differed between seasons in the branching and
foliose coral habitat, while differences were not sig-
nificant in the massive coral site, which also featured a
higher amount of dead coral.

Implications for an improved monitoring
of environmental change on small tropical islands

Coral reef fishes have been used as an indicator for
environmental degradation and influence in different
tropical ecosystems (Bortone and Davis 1994; Harmelin
et al. 1995; Jones and Kaly 1996; Öhman and
Rajasuriya 1998; Chovanec et al. 2003). In the present
study, a number of fish species exhibited a strong rela-
tion to a particular habitat type, i.e. to branching Acrop-
orids (e.g.,Chromis analis), massive corals (e.g., Scarus
chameleon, Scarus forsteni), and foliose corals (e.g.,
Pomacentrus alexanderae). This could have implica-
tions for an improved monitoring of environmental
change in the region. The use of corallivorous species
as bioindicators could be considered to monitor the
health of coral reefs. For instance, Chaetodon octofas-
ciatus, which in the present study occurred in all of the
study plots, has been shown to be highly correlated with
reefs dominated by live Acropora in other parts of the
Kepulauan Seribu Marine National Park (Madduppa
2006). Pratchett et al. (2006) could demonstrate that
extensive coral depletion can have a major effect on
the abundance of butterflyfishes, which rely on hard

corals for food and are limited in their ability to utilize
alternate prey types. Even though the percentage of
corallivorous species is small in proportion to the total
fish community (Findley and Findley 2001), members
of this family have been considered by many authors as
biological indicator for coral reef health (e.g. Crosby
and Reese 1996; Öhman et al. 1998a; Kulbicki et al.
2005). The appearance of scarids in only the massive
coral plots, which had the lowest amount of live coral
but the highest amount of dead coral and algae, would
make them a candidate as an indicator species of envi-
ronmental degradation. On the other hand, due to their
grazing activity, parrotfishes are an important group for
reef resilience (Bellwood et al. 2004), and they can be
particularly vulnerable to overfishing (e.g., McClanahan
1994). Thus, the use of parrotfish as environmental
indicators should be treated highly context-specific.
However, by using a multivariate approach that com-
bines assessments of a number of key groups that fulfil
important ecological functions and are associated with a
particular type of habitat, fish community data can serve
as a valuable tool in judging habitat quality. Chovanec et
al. (2003) suggested that associated coral reef organisms
such as fishes are a crucial indicator of the ecological
integrity of the ecosystems at different scales due to their
complex habitat requirements. Furthermore, Raymundo
et al. (2009) were able to show that functionally diverse
fish communities are able to increase the resilience of
the coral reef ecosystem e.g. in terms of susceptibility to
disease. Therefore, using fishes as bioindicators repre-
sents a good monitoring tool especially with regard to
anthropogenic factors.

The multivariate analysis of the reef fish community
was able to detect differences between the composition of
the coral reef fish community associated with different
habitat types at Pari Island, both when based on species
abundances and when aggregated according to trophic
categories. On the other hand, traditional univariate
measures, such as fish abundance and species diversity,
were able to show seasonal changes that were not con-
sistently detected by multivariate analysis, underlining
the importance of selecting appropriate variables and
tools depending on the factor to be assessed. In conclu-
sion, the present results from Pari Island demonstrate that
the fish community constitutes a useful bioindicator for
environmental change in small island coral reef ecosys-
tems. While the detection of high functional diversity of
the fish community, a factor important for reef resilience
(Bellwood et al. 2004), requires a more thorough

Environ Biol Fish (2012) 95:383–398 395



assessment, resource constraints may necessitate focus-
ing the census protocol on fewer selected species. Based
on the present study results, labrids and pomacentrids,
together with serranids, chaetodonts and scarids, are sug-
gested to be included in monitoring programs in the
region as indicator species, as they combine species
closely associated with particular substrate types, fulfill-
ing important ecological functions, and being susceptible
to fishing pressure. The reef environments of Indonesia
are facing increasing anthropogenic pressures, as well as
a multitude of management interventions and restoration
efforts. The results of the current study should be seen as
a baseline study for the reef environment of the Kepu-
lauan Seribu, since it is the first detailed study in the
region. The results furthermore emphasize that future
studies are critical to test what species are the best indi-
cators of coral reef health in the Pari Island group. Future
monitoring should be repeated at least twice per year to
cover seasonal changes. In addition, more studies of reef
fish communities and habitat characteristics throughout
the region are needed to document environmental
changes over time and assess the effectiveness of man-
agement and restoration measures.
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